Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Rheumatol Adv Pract ; 8(2): rkae038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605731

RESUMO

Objectives: Central nervous system vasculitis (CNSV) is a rare disease. High-resolution vessel wall imaging (HR-VWI) enables the identification of inflammatory changes within the vessel wall. Few studies have applied HR-VWI to assess CNSV in children. This study delves into the utility of HR-VWI for diagnosing and treating CNSV in children, with the aim of enhancing clinical diagnosis and efficacy evaluation. Methods: Imaging data were acquired from children who underwent HR-VWI examinations. The study meticulously analysed clinical data and laboratory tests to discern the characteristics and distribution patterns of diverse vasculitis forms. Results: In children, CNSV mainly involves medium vessels with grade 1 and 2 stenosis (grade 4 stenosis is rare), and the imaging features generally show centripetal and moderate enhancement, suggesting that this feature is specific for the diagnosis of CNSV. High-grade stenosis, concentric enhancement and strong enhancement of the vasculature indicate more severe disease activity. Remarkably, HR-VWI proved to be significantly more sensitive than magnetic resonance angiography in detecting CNSV. Among the 13 cases subjected to imaging review, 8 demonstrated a reduction or resolution of vessel wall inflammation. In contrast, five patients exhibited worsening inflammation in the vessel wall. HR-VWI demonstrated that changes in vessel wall inflammation were closely correlated with changes in brain parenchymal lesions and symptoms. Conclusion: This study underscores the diagnostic value of HR-VWI in CNSV assessment and treatment monitoring, offering a quantitative evaluation of CNSV in children.

2.
Molecules ; 29(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542838

RESUMO

As one of the traditional Chinese herbs, Danshen (Salvia miltiorrhiza Bunge) has been widely studied and widely used in the treatment of cardiovascular, cerebrovascular, and other immune diseases. Tanshinones and salvianolic acids isolated from Danshen are considered to be the main components of its biological activity and pharmacology that play important roles in increasing the index of immune organs, regulating the number and function of immune cells, and releasing immunoreactive substances. Especially tanshinone IIA, cryptotanshinone, salvianolic acid B, and rosmarinic acid show good biological activity in treating rheumatoid arthritis, some immune-mediated inflammatory diseases, psoriasis, and inflammatory bowel disease. In order to understand their pharmacological effects and provide references for future research and clinical treatment, the regulation of immune response by tanshinones and salvianolic acids is summarized in detail in this paper. In addition, the challenges in their pharmacological development and the opportunities to exploit their clinical potential have been documented.


Assuntos
Alcenos , Antineoplásicos , Polifenóis , Salvia miltiorrhiza , Abietanos/farmacologia , Imunidade
3.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38391021

RESUMO

The rapid realization of efficient anti-icing coatings on diverse substrates is of vital value for practical applications. However, current approaches for rapid preparations of anti-icing coatings are still deficient regarding their surface universality and accessibility. Here, we report a simple processing approach to rapidly form icephobic liquid-like polydimethylsiloxane (PDMS) brushes on various substrates, including metals, ceramics, glass, and plastics. A poly(dimethylsiloxane), trimethoxysilane is applied as a reactant under the catalysis of a minimal amount of acid formed by hydrolysis of dichlorodimethylsilane. With such an advantage, this approach is approved to be applicable of coating metal surfaces with less corrosion. The distinctive flexibility of the PDMS chains provides a liquid-like property to the coating showing low contact angle hysteresis and ice adhesion strength. Notably, the ice adhesion strength remains similar across a wide temperature window, from -70 to -10 °C, with a value of 18.4 kPa. The PDMS brushes demonstrate perfect capability for resisting acid and alkali corrosions, ultra-violet degradation, and even tens of icing/deicing cycles. Moreover, the liquid-like coating can also form at supercooling conditions, such as -20 °C, and shows an outstanding anti-icing/deicing performance, which meets the in situ coating reformation requirement under extreme conditions when it is damaged. This instantly forming anti-icing material will benefit from resisting instantaneous ice accretion on surfaces under extremely cold conditions.

4.
Int. j. morphol ; 42(1): 173-184, feb. 2024.
Artigo em Inglês | LILACS | ID: biblio-1528836

RESUMO

SUMMARY: Calcium-activated chloride channel regulator 1 (CLCA1) is associated with cancer progression. The expression and immunologic function of CLCA1 in stomach adenocarcinoma (STAD) remain unclear. In this investigation, the expression of CLCA1 in STAD tissues and its involvement in the progression and immune response of STAD were examined using databases such as cBioPortal, TISIDB, and UALCAN. In order to validate the expression level of CLCA1 protein in gastric adenocarcinoma, thirty clinical tissue specimens were gathered for immunohistochemical staining. The findings indicated a downregulation of CLCA1 in STAD patients, which was correlated with race, age, cancer grade, Helicobacter pylori infection, and molecular subtype. Through the examination of survival analysis, it was identified that diminished levels of CLCA1 within gastric cancer cases were linked to decreased periods of post-progression survival (PPS), overall survival (OS), and first progression (FP) (P<0.05). The CLCA1 mutation rate was lower in STAD, but the survival rate was higher in the variant group. The correlation between the expression level of CLCA1 and the levels of immune infiltrating cells in STAD, as well as the immune activating molecules, immunosuppressive molecules, MHC molecules, chemokines, and their receptor molecules, was observed. Gene enrichment analysis revealed that CLCA1 may be involved in STAD progression through systemic lupus erythematosus (SLE), proteasome, cell cycle, pancreatic secretion, and PPAR signaling pathways. In summary, CLCA1 is anticipated to function as a prognostic marker for patients with STAD and is linked to the immunization of STAD.


El regulador 1 del canal de cloruro activado por calcio (CLCA1) está asociado con la progresión del cáncer. La expresión y la función inmunológica de CLCA1 en el adenocarcinoma de estómago (STAD) aún no están claras. En esta investigación, se examinó la expresión de CLCA1 en tejidos STAD y su participación en la progresión y respuesta inmune de STAD utilizando bases de datos como cBioPortal, TISIDB y UALCAN. Para validar el nivel de expresión de la proteína CLCA1 en el adenocarcinoma gástrico, se recolectaron treinta muestras de tejido clínico para tinción inmunohistoquímica. Los hallazgos indicaron una regulación negativa de CLCA1 en pacientes con STAD, que se correlacionó con la raza, la edad, el grado del cáncer, la infección por Helicobacter pylori y el subtipo molecular. Mediante el examen del análisis de supervivencia, se identificó que los niveles reducidos de CLCA1 en los casos de cáncer gástrico estaban relacionados con períodos reducidos de supervivencia posterior a la progresión (PPS), supervivencia general (OS) y primera progresión (FP) (P <0,05). La tasa de mutación CLCA1 fue menor en STAD, pero la tasa de supervivencia fue mayor en el grupo variante. Se observó la correlación entre el nivel de expresión de CLCA1 y los niveles de células inmunes infiltrantes en STAD, así como las moléculas activadoras inmunes, moléculas inmunosupresoras, moléculas MHC, quimiocinas y sus moléculas receptoras. El análisis de enriquecimiento genético reveló que CLCA1 puede estar involucrado en la progresión de STAD a través del lupus eritematoso sistémico (LES), el proteasoma, el ciclo celular, la secreción pancreática y las vías de señalización de PPAR. En resumen, se prevé que CLCA1 funcione como un marcador de pronóstico para pacientes con STAD y está vinculado a la inmunización de STAD.


Assuntos
Humanos , Neoplasias Gástricas/metabolismo , Adenocarcinoma/metabolismo , Canais de Cloreto/metabolismo , Prognóstico , Neoplasias Gástricas/imunologia , Imuno-Histoquímica , Adenocarcinoma/imunologia , Biomarcadores Tumorais , Análise de Sobrevida , Canais de Cloreto/genética , Canais de Cloreto/imunologia , Biologia Computacional , Mutação
5.
J Mater Chem B ; 12(9): 2217-2235, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345580

RESUMO

During the process of peripheral nerve repair, there are many complex pathological and physiological changes, including multi-cellular responses and various signaling molecules, and all these events establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ reinnervation. The immune system plays an indispensable role in the process of nerve repair and function recovery. An effective immune response not only involves innate-immune and adaptive-immune cells but also consists of chemokines and cytokines released by these immune cells. The elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the general immune cell response to peripheral nerve injury and focuses on their contributions to functional recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through physical and biochemical factors combined with scaffolds are discussed. The dynamic immune responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral nerve regeneration.


Assuntos
Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/terapia , Engenharia Tecidual , Nervos Periféricos , Regeneração Nervosa , Macrófagos
6.
Int. j. morphol ; 41(6): 1764-1774, dic. 2023. ilus
Artigo em Inglês | LILACS | ID: biblio-1528797

RESUMO

SUMMARY: Colon adenocarcinoma (COAD) is a prevalent disease worldwide, known for its high mortality and morbidity rates. Despite this, the extent of investigation concerning the correlation between COAD's CLCA1 expression and immune cell infiltration remains insufficient. This study seeks to examine the expression and prognosis of CLCA1 in COAD, along with its relationship to the tumor immune microenvironment. These findings will offer valuable insights for clinical practitioners and contribute to the existing knowledge in the field. In order to evaluate the prognostic significance of CLCA1 in individuals diagnosed with colorectal cancers, we conducted a comprehensive analysis using univariate and multivariate Cox regression models along with receiver operating characteristic curve (ROC) analysis. This study was performed on the patient data of COAD obtained from The Cancer Genome Atlas (TCGA) database. Nomograms were developed to anticipate CLCA1 prognostic influence. Furthermore, the CLCA1 association with tumor immune infiltration, immune checkpoints, immune checkpoint blockade (ICB) response, interaction network, and functional analysis of CLCA1-related genes was analyzed. We found that Colon adenocarcinoma tissues significantly had decreased CLCA1 expression compared to healthy tissues. Furthermore, the study revealed that the group with high expression of CLCA1 demonstrated a significantly higher overall survival rate (OS) as compared to the group with low expression. Multivariate and Univariate Cox regression analysis revealed the potential of CLCA1 as a standalone risk factor for COAD. These results were confirmed using nomograms and ROC curves. In addition, protein-protein interaction (PPI) network analysis and functional gene enrichment showed that CLCA1 may be associated with functional activities such as pancreatic secretion, estrogen signaling and cAMP signaling, as well as with specific immune cell infiltration. Therefor, as a new independent predictor and potential biomarker of COAD, CLCA1 plays a crucial role in the advancement of colon cancer.


El adenocarcinoma de colon (COAD) es una enfermedad prevalente a nivel mundial, conocida por sus altas tasas de mortalidad y morbilidad. Sin embargo, el alcance de la investigación sobre la correlación entre la expresión de CLCA1 de COAD y la infiltración de células inmunes sigue siendo insuficiente. Este estudio busca examinar la expresión y el pronóstico de CLCA1 en COAD, junto con su relación con el microambiente inmunológico del tumor. Estos hallazgos ofrecerán conocimientos valiosos para los profesionales clínicos y contribuirán al conocimiento existente en el campo. Para evaluar la importancia de pronóstico de CLCA1 en personas diagnosticadas con cáncer colorrectal, realizamos un análisis exhaustivo utilizando modelos de regresión de Cox univariados y multivariados junto con un análisis de la curva característica operativa del receptor (ROC). Este estudio se realizó con los datos de pacientes de COAD obtenidos de la base de datos The Cancer Genome Atlas (TCGA). Se desarrollaron nomogramas para anticipar la influencia pronóstica de CLCA1. Además, se analizó la asociación de CLCA1 con la infiltración inmunitaria tumoral, los puntos de control inmunitarios, la respuesta de bloqueo de los puntos de control inmunitarios (ICB), la red de interacción y el análisis funcional de genes relacionados con CLCA1. Descubrimos que los tejidos de adenocarcinoma de colon tenían una expresión significativamente menor de CLCA1 en comparación con los tejidos sanos. Además, el estudio reveló que el grupo con alta expresión de CLCA1 demostró una tasa de supervivencia general (SG) significativamente mayor en comparación con el grupo con baja expresión. El análisis de regresión de Cox multivariado y univariado reveló el potencial de CLCA1 como factor de riesgo independiente de COAD. Estos resultados se confirmaron mediante nomogramas y curvas ROC. Además, el análisis de la red de interacción proteína- proteína (PPI) y el enriquecimiento de genes funcionales mostraron que CLCA1 puede estar asociado con actividades funcionales como la secreción pancreática, la señalización de estrógenos y la señalización de AMPc, así como con la infiltración de células inmunes específicas. Por lo tanto, como nuevo predictor independiente y biomarcador potencial de COAD, CLCA1 desempeña un papel crucial en el avance del cáncer de colon.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Adulto Jovem , Adenocarcinoma/imunologia , Neoplasias do Colo/imunologia , Canais de Cloreto/imunologia , Prognóstico , Imuno-Histoquímica , Adenocarcinoma/metabolismo , Análise de Sobrevida , Análise Multivariada , Análise de Regressão , Neoplasias do Colo/metabolismo , Canais de Cloreto/metabolismo , Biologia Computacional
7.
Int Immunopharmacol ; 120: 110287, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37182449

RESUMO

BACKGROUND AND PURPOSE: Neuroinflammation, mainly mediated by microglia, is involved in the evolution of Alzheimer's disease (AD). Parthenolide (PTL) has diverse pharmacological effects such as anti-inflammatory and antioxidative stress. However, whether PTL can modulate microglia-mediated neuroinflammation to improve cognitive impairment in amyloid precursor protein/presenilin 1 (APP/PS1) mice is unclear. METHODS: LPS/IFN-γ-induced BV2 and HMC3 microglia were used for in vitro experiments; the roles of PTL on anti-inflammatory, anti-oxidative, phagocytic activity, and neuroprotection were assessed by inflammatory cytokines assays, dichlorodihydrofluorescein diacetate, phagocytosis, and cell counting kit-8 assays. Western blot and immunofluorescence(IF) were used to examine related molecular mechanisms. In vivo, IF and western blot were applied in LPS-treated wild-type (WT) mice and APP/PS1 mice models. The Morris water maze test was performed to evaluate the effects of PTL on cognitive disorders. RESULTS: In vitro, PTL dramatically suppressed proinflammatory cytokines IL-6, IL-1ß, and TNF-α release and increased IL-10 levels. Moreover, PTL decreased reactive oxygen species and restored microglial phagocytic activities via the AKT/MAPK/ NF-κB signaling pathway. Importantly, we discovered that PTL obviously enhanced TRIM31 expression and siTRIM31 elevated proinflammatory cytokine levels. Furthermore, we determined that the anti-inflammatory role of PTL was mostly TRIM31/NLRP3 signaling-dependent. In vivo, PTL alleviated microgliosis and astrogliosis in LPS-treated WT and APP/PS1 mice. Additionally, PTL significantly ameliorated memory and learning deficits in cognitive behaviors. CONCLUSIONS: PTL improved cognitive and behavioral dysfunction, inhibited neuroinflammation, and showed potent anti-neuroinflammatory activity and neuroprotective effects by improving the MAPK/TRIM31/NLRP3 axis. Our study emphasized the therapeutic potential of PTL for improving cognitive disorders during AD progression.


Assuntos
Disfunção Cognitiva , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Transgênicos , Microglia , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
8.
Front Plant Sci ; 14: 1158035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229126

RESUMO

Kentucky bluegrass (Poa pratensis L.) is an eminent turfgrass species with a complex genome, but it is sensitive to rust (Puccinia striiformis). The molecular mechanisms of Kentucky bluegrass in response to rust still remain unclear. This study aimed to elucidate differentially expressed lncRNAs (DELs) and genes (DEGs) for rust resistance based on the full-length transcriptome. First, we used single-molecule real-time sequencing technology to generate the full-length transcriptome of Kentucky bluegrass. A total of 33,541 unigenes with an average read length of 2,233 bp were obtained, which contained 220 lncRNAs and 1,604 transcription factors. Then, the comparative transcriptome between the mock-inoculated leaves and rust-infected leaves was analyzed using the full-length transcriptome as a reference genome. A total of 105 DELs were identified in response to rust infection. A total of 15,711 DEGs were detected (8,278 upregulated genes, 7,433 downregulated genes) and were enriched in plant hormone signal transduction and plant-pathogen interaction pathways. Additionally, through co-location and expression analysis, it was found that lncRNA56517, lncRNA53468, and lncRNA40596 were highly expressed in infected plants and upregulated the expression of target genes AUX/IAA, RPM1, and RPS2, respectively; meanwhile, lncRNA25980 decreased the expression level of target gene EIN3 after infection. The results suggest that these DEGs and DELs are important candidates for potentially breeding the rust-resistant Kentucky bluegrass.

9.
Yi Chuan ; 45(4): 354-363, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37077168

RESUMO

Drosophila is a crucial biological experimental teaching material extensively utilized in experimental teaching. In this experimental teaching, each student typically needs to manually identify hundreds of fruit flies and record multiple of each fly. This task involves substantial workload, and the classification standards can be inconsistent. To address this issue, we introduce a deep convolutional neural network that classifies the traits of every fruit fly, using a two-stage consisting of an object detector and a trait classifier. We propose a keypoint-assisted classification model with tailored training session for the trait classification task and significantly enhanced the model interpretability. Additionally, we've enhanced the RandAugment method to better fit the features of our task. The model is trained with progressive learning and adaptive regularization under limited computational resources. The final classification model, which utilizes MobileNetV3 as backbone, achieves an accuracy of 97.5%, 97.5% and 98% for the eyes, wings, gender tasks, respectively. After optimization, the model is highly lightweight, classifying 600 fruit fly traits from raw images in 10 seconds and having a size less than 5 MB. It can be easily deployed on any android device. The development of this system is conducive to promoting the experimental teaching, such as verifying genetic laws with Drosophila as the research object. It can also be used for scientific research involving a large number of Drosophila classifications, statistics and analyses.


Assuntos
Drosophila , Redes Neurais de Computação , Animais , Drosophila/genética , Computadores , Tecnologia
10.
Chem Biodivers ; 20(4): e202300025, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36898972

RESUMO

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and trigger an inflammatory response via the myeloid differential factor 88 (MyD88)-dependent and toll-interleukin-1 receptor domain-containing adapter-inducing interferon-ß (TRIF)-dependent pathways. Lindenane type sesquiterpene dimers (LSDs) are characteristic metabolites of plants belonging to the genus Sarcandra (Chloranthaceae). The aim of this study was to evaluate the potential anti-inflammatory effects of the LSDs shizukaol D (1) and sarcandrolide E (2) on lipopolysaccharides (LPS)-stimulated RAW264.7 macrophages in vitro, and explore the underlying mechanisms. Both LSDs neutralized the LPS-induced morphological changes and production of nitric oxide (NO), as determined by CCK-8 assay and Griess assay, respectively. Furthermore, shizukaol D (1) and sarcandrolide E (2) downregulated interferon ß (IFNß), tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) mRNA levels as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibited the phosphorylation of nuclear factor kappa B p65 (p65), nuclear factor kappa-Bα (IκBα), Jun N-terminal kinase (JNK), extracellular regulated kinase (ERK), mitogen-activated protein kinase p38 (p38), MyD88, IL-1RI-associated protein kinase 1 (IRAK1), and transforming growth factor-ß-activated kinase 1 (TAK1) proteins in the Western blotting assay. In conclusion, LSDs can alleviate the inflammatory response by inhibiting the TLR/MyD88 signalling pathway.


Assuntos
Inflamação , Sesquiterpenos , Receptores Toll-Like , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Sesquiterpenos/farmacologia , Receptores Toll-Like/antagonistas & inibidores , Receptores Toll-Like/metabolismo
11.
Exp Ther Med ; 25(2): 76, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36684658

RESUMO

The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.

12.
Radiology ; 306(1): 207-217, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36040333

RESUMO

Background Three-dimensional (3D) time-of-flight (TOF) MR angiography (MRA) at 7 T has been reported to have high image quality for visualizing small perforating vessels. However, B1 inhomogeneity and more physiologic considerations limit its applications. Angiography at 5 T may provide another choice for intracranial vascular imaging. Purpose To evaluate the image quality and cerebrovascular visualization of 5-T 3D TOF MRA for visualizing intracranial small branch arteries. Materials and Methods Participants (healthy volunteers or participants with a history of ischemic stroke undergoing intracranial CT angiography or MRA for identifying steno-occlusive disease) were prospectively included from September 2021 to November 2021. Each participant underwent 3-T, 5-T, and 7-T 3D TOF MRA with use of customized MR protocols within 48 hours. Radiologist scoring from 0 (invisible) to 3 (excellent) and quantitative assessment were obtained to evaluate the image quality. The Friedman test was used for comparison of characteristics derived from 3 T, 5 T, and 7 T. Results A total of 12 participants (mean age ± SD, 38 years ± 9; nine men) were included. Visualizations of the distal arteries and small vessels at 5-T TOF MRA were significantly higher than those at 3 T (median score: 3.0 vs 2.0, all P < .001 for distal segments and lenticulostriate artery; median score: 2.0 vs 0, P < .001 for pontine artery). The total length of small vessel branches detected at 5 T was larger than that at 3 T (5.1 m ± 0.7 vs 1.9 m ± 0.4; P < .001). However, there was no evidence of a significant difference compared with 7 T in either the depiction of distal segments and small vessel branches (average median score, 2.5; all P > .05) or the quantitative measurements (total length, 5.6 m ± 0.5; P = .41). Conclusion Three-dimensional time-of-flight MR angiography at 5 T presented the capability to provide superior visualization of distal large arteries and small vessel branches (in terms of subjective and quantitative assessment) to 3 T and had image quality similar to 7 T. © RSNA, 2022 Online supplemental material is available for this article. An earlier incorrect version appeared online. This article was corrected on September 14, 2022.


Assuntos
Angiografia por Ressonância Magnética , Tomografia Computadorizada por Raios X , Masculino , Humanos , Angiografia por Ressonância Magnética/métodos , Artérias Cerebrais , Artéria Cerebral Média , Angiografia por Tomografia Computadorizada , Imageamento Tridimensional
13.
Quant Imaging Med Surg ; 12(11): 5171-5183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36330178

RESUMO

Background: Accurate grading of gliomas is a challenge in imaging diagnosis. This study aimed to evaluate the performance of a machine learning (ML) approach based on multiparametric diffusion-weighted imaging (DWI) in differentiating low- and high-grade adult gliomas. Methods: A model was developed from an initial cohort containing 74 patients with pathology-confirmed gliomas, who underwent 3 tesla (3T) diffusion magnetic resonance imaging (MRI) with 21 b values. In all, 112 histogram features were extracted from 16 parameters derived from seven diffusion models [monoexponential, intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI), fractional order calculus (FROC), continuous-time random walk (CTRW), stretched-exponential, and statistical]. Feature selection and model training were performed using five randomly permuted five-fold cross-validations. An internal test set (15 cases of the primary dataset) and an external cohort (n=55) imaged on a different scanner were used to validate the model. The diagnostic performance of the model was compared with that of a single DWI model and DWI radiomics using accuracy, sensitivity, specificity, and the area under the curve (AUC). Results: Seven significant multiparametric DWI features (two from the stretched-exponential and FROC models, and three from the CTRW model) were selected to construct the model. The multiparametric DWI model achieved the highest AUC (0.84, versus 0.71 for the single DWI model, P<0.05), an accuracy of 0.80 in the internal test, and both AUC and accuracy of 0.76 in the external test. Conclusions: Our multiparametric DWI model differentiated low- (LGG) from high-grade glioma (HGG) with better generalization performance than the established single DWI model. This result suggests that the application of an ML approach with multiple DWI models is feasible for the preoperative grading of gliomas.

15.
Front Oncol ; 12: 992468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313717

RESUMO

Background: The mechanism of cuproptosis has recently been reported in lipoylated proteins of the tricarboxylic acid (TCA) cycle. Besides, the role of copper was previously recognized in cancer progression. We evaluated the prognostic value of cuproptosis-related gene expression in hepatocellular carcinoma (HCC). Methods: Remarkable genes were selected both in differential expression analysis and Kaplan-Meier survival analysis from ninety-six cuproptosis-related genes using The Cancer Genome Atlas (TCGA) database. The relationships between clinical characteristics and gene expression were performed with Wilcoxon signed-rank test, Kruskal-Wallis test, and logistic regression. Clinicopathologic factors correlated with overall survival in HCCs conducting univariate and multivariate Cox regression analysis. Gene Expression Profiling Interactive Analysis 2 (GEPIA2) and Human Protein Atlas (HPA) databases were utilized to verify the results. Furthermore, Gene Set Enrichment Analysis (GSEA) identified the potential key pathways that dominate cuproptosis in HCC. Results: Elevated ATP7A, SLC25A3, SCO2, COA6, TMEM199, ATP6AP1, LIPT1, DLAT, PDHA1, MTF1, ACP1, FDX2, NUBP2, CIAPIN1, ISCA2 and NDOR1 expression, as well as declined AOC1, FDX1, MT-CO1, and ACO1 expression were significantly emerged in HCC tumor tissues and were significantly associated with HCCs poor survival. The expressions of screened cuproptosis-related genes were prominently related to clinical features. GSEA analysis reported many key signaling pathways (such as natural killer cell mediated cytotoxicity, TCA cycle, glutathione metabolism, ATP-binding cassette (ABC) transporters, Notch signaling pathway, ErbB signaling pathway, and metabolism of xenobiotics by cytochrome p450) were differentially enriched in HCCs with varying degrees of cuproptosis-related genes expression. Conclusions: The twenty cuproptosis-related genes might be utilized as new candidate prognostic biomarkers for HCC.

16.
Biomaterials ; 290: 121828, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36215909

RESUMO

This study reports the cellular self-organization of primary human renal proximal tubule epithelial cells (RPTECs) around a minimal Matrigel scaffold to produce basal-in and apical-out proximal tubule organoids (tubuloids). These tubuloids are produced and maintained in hanging drop cultures for 90+ days, the longest such culture of any kind reported to date. The tubuloids upregulate maturity markers, such as aquaporin-1 (AQP1) and megalin (LRP2), and exhibit less mesenchymal and proliferation markers, such as vimentin and Ki67, compared to 2D cultures. They also experience changes over time as revealed by a comparison of gene expression patterns of cells in 2D culture and in day 31 and day 67 tubuloids. Gene expression analysis and immunohistochemistry reveal an increase in the expression of megalin, an endocytic receptor that can directly bind and uptake protein or potentially assist protein uptake. The tubuloids, including day 90 tubuloids, uptake fluorescent albumin and reveal punctate fluorescent patterns, suggesting functional endocytic uptake through these receptors. Furthermore, the tubuloids release kidney injury molecule-1 (KIM-1), a common biomarker for kidney injury, when exposed to albumin in both dose- and time-dependent manners. While this study focuses on potential applications for modeling proteinuric kidney disease, the tubuloids may have broad utility for studies where apical proximal tubule cell access is required.


Assuntos
Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Organoides , Humanos , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Organoides/metabolismo , Longevidade , Túbulos Renais Proximais/metabolismo , Albuminas/metabolismo
17.
Mediators Inflamm ; 2022: 5400592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36254157

RESUMO

Background: Traumatic optic neuropathy (TON) refers to damage to the optic nerve resulting from direct and indirect trauma to the head and face. One of the important pathological processes in TON is the death of retinal ganglion cells (RGCs), but the cause of RGCs death remains unclear. We aimed to explore the mechanisms of RGCs death in an experimental TON model. Methods: Optic nerve crush injury was induced in ten New Zealand white rabbits. On the 1st, 3rd, 7th, 14th, and 28th days after the operation, the retinal tissues of the rabbits were observed pathologically by hematoxylin-eosin staining. The expression of POU-homeodomain transcription factor Brn3a and glial fibrillary acidic protein (GFAP) was measured by immunofluorescence to evaluate the number of RGCs and astrocytes, respectively. miRNA expression and protein levels were assessed by RT-qPCR and western blot methods, respectively. Finally, the malondialdehyde content, superoxide dismutase activity, and proinflammatory factor levels were measured by ELISA. Western blot and dual-luciferase reporter assays were used to elucidate the relationship between miR-181d-5p and nuclear factor I-A (NFIA). Results: Blunt ocular trauma increased oxidative stress and apoptosis and reduced ganglion cell layer (GCL) density. The expression of miR-181d-5p was decreased in retinal tissues, and its overexpression relieved RGCs death, astrocyte development, oxidative stress, and inflammation of the retina, which were reversed by NFIA overexpression. Conclusion: miR-181d-5p can protect against the deterioration of TON by inhibiting RGCs death, astrocyte development, oxidative stress, and inflammation by targeting NFIA. This study provides new insight into early medical intervention in patients with TON.


Assuntos
MicroRNAs , Traumatismos do Nervo Óptico , Animais , Coelhos , Astrócitos/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/uso terapêutico , Proteína Glial Fibrilar Ácida/metabolismo , Hematoxilina/metabolismo , Hematoxilina/uso terapêutico , Inflamação/metabolismo , Malondialdeído/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFI/metabolismo , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Superóxido Dismutase/metabolismo
18.
Mol Biol Rep ; 49(11): 10269-10277, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097121

RESUMO

BACKGROUND: The purpose of this study was to investigate the relationship between the expression of autophagy-related genes and prognosis in hepatocellular carcinoma (HCC). METHODS AND RESULTS: We selected three autophagy-related genes (ATG3, ATG7, and ATG9A) from gene expression data of liver cancer patients in The Cancer Genome Atlas (TCGA) database by Kaplan-Meier survival analysis, univariate and multivariate Cox regression analysis, and Gene Set Enrichment Analysis (GSEA). Human Protein Atlas (HPA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases were applied to testify the credibility of our results. The expression levels of ATG3, ATG7, and ATG9A were verified by real-time quantitative PCR (RT-qPCR) in normal liver cells (L02) and three HCC cell lines (HepG2, Hep3b, and Li-7). Data analysis results from TCGA showed high ATG3, ATG7, ATG9A expression in HCC tumor tissues. Kaplan-Meier survival analysis showed that the survival rate of the high expression group of ATG3, ATG7, and ATG9A was all significantly lower than the low expression group. GSEA analysis showed that many signaling pathways (such as the regulation of autophagy, glycine serine and threonine metabolism, pathways in cancer, mitogen-activated protein kinase (MAPK) signaling pathway, mammalian target of rapamycin (mTOR) signaling pathway, as well as P53 signaling pathway) were differentially enriched in HCCs with ATG3, ATG7, and ATG9A expression. GEPIA and RT-qPCR also identified that the mRNA expression level of ATG3, ATG7, and ATG9A in normal liver cells were significantly lower than in HCC cells. High protein expression of ATG3, ATG7, and ATG9A was displayed in HCCs from the HPA database. CONCLUSIONS: The ATG3, ATG7, ATG9A might be utilized as prognostic biomarkers for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Prognóstico , Perfilação da Expressão Gênica , Autofagia/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética
19.
Molecules ; 27(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014489

RESUMO

Schizonepeta tenuifolia Briq. is a famous Chinese traditional medicine with antipyretic, anti-inflammatory, analgesic and hemostatic effects. Many chemical components can be isolated and detected by using various analysis methods, including monoterpenes, sesquiterpenes, aldehydes, ketones, quinones, alcohols, phenols, carboxylic acids and esters, etc., in which volatile oil was considered to be the main chemical component. In this paper, the chemical constituents and their pharmacological effects were reviewed by summarizing the recent literature, revealing the relationship between them.


Assuntos
Medicamentos de Ervas Chinesas , Lamiaceae , Óleos Voláteis , Sesquiterpenos , Monoterpenos/análise , Monoterpenos/farmacologia , Óleos Voláteis/farmacologia , Sesquiterpenos/farmacologia
20.
Biotechnol Bioeng ; 119(9): 2564-2573, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716141

RESUMO

In natural systems bacteria are exposed to many chemical stimulants; some attract chemotactic bacteria as they promote survival, while others repel bacteria because they inhibit survival. When faced with a mixture of chemoeffectors, it is not obvious which direction the population will migrate. Predicting this direction requires an understanding of how bacteria process information about their surroundings. We used a multiscale mathematical model to relate molecular level details of their two-component signaling system to the probability that an individual cell changes its swimming direction to the chemotactic velocity of a bacterial population. We used a microfluidic device designed to maintain a constant chemical gradient to compare model predictions to experimental observations. We obtained parameter values for the multiscale model of Escherichia coli chemotaxis to individual stimuli, α-methylaspartate and nickel ion, separately. Then without any additional fitting parameters, we predicted bacteria response to chemoeffector mixtures. Migration of E. coli toward α-methylaspartate was modulated by adding increasing concentrations of nickel ion. Thus, the migration direction was controlled by the relative concentrations of competing chemoeffectors in a predictable way. This study demonstrated the utility of a multiscale model to predict the migration direction of bacteria in the presence of competing chemoeffectors.


Assuntos
Quimiotaxia , Técnicas Analíticas Microfluídicas , Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Dispositivos Lab-On-A-Chip , Níquel
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...